Física del sonido

¡Atención DJs!: Lo que debéis saber sobre la oscilación del sonido

¡Atención DJs!: Lo que debéis saber sobre la oscilación del sonido
Violín Pixabay

Se denomina oscilación a una variación, perturbación o fluctuación en el tiempo de un medio o sistema. En física, química e ingeniería es el movimiento repetido en torno a una posición central, o posición de equilibrio. Más específicamente se suele hablar de vibración cuando la oscilación tiene lugar en un sólido, según wp. Este fenómeno de vaivén tan habitual y con orígenes tan dispares, es fácil de reconocer por ejemplo, en el movimiento de un columpio, el péndulo de un reloj, el movimiento de la lengüeta de un instrumento musical de viento o en la forma rizada de la superficie del agua como consecuencia de las ondas que se generan en ella. Se dice que un sistema físico (mecánico, eléctrico, luminoso, etc. ) oscila cuando algunos parámetros representativos del mismo (tiempo, posición, velocidad, intensidad eléctrica, tensión eléctrica, elongación, ángulo de giro, intensidad luminosa, etc…) adquieren unos valores que se van repitiendo periódicamente.

El estudio de las oscilaciones también se utiliza como punto de partida para describir las ondas. El movimiento ondulatorio (las ondas) se va a generar a partir de oscilaciones, y su representación matemática, aunque más compleja, viene implementada con las mismas funciones armónicas que las de las oscilaciones pero, además de su dependencia con el tiempo, va a aparecer de manera simultánea, su variación con la posición. Fenómenos de origen ondulatorio de gran interés, como son las interferencias , la polarización o las pulsaciones​, se pueden tratar matemáticamente y analizar físicamente por medio de la superposición de oscilaciones.

Las oscilaciones, vibraciones o movimientos oscilatorios, forman parte de la vida, de la experiencia y del vocabulario ordinario. Los movimientos de vaivén, una forma de oscilación básica, son bastante habituales y fáciles de observar en la naturaleza. Las vibraciones, pueden estar generadas por tracciones o compresiones mecánicas realizadas sobre un material, que debido a la elasticidad del mismo, responde con un movimiento de vaivén. Las oscilaciones son debidas también a las compresiones y expansiones de los fluidos. Pero las oscilaciones no sólo se deben a la tracción o la compresión realizada mecánicamente, sino también son debidas a la intervención de las ondas sonoras, a movimientos sísmicos o a las que generan, en general, las ondas. Entre ellas, cabe citar como fuente de oscilación, las ondas electromagnéticas, las ondas superficiales o las de profundidad en el mar, etc. De ahí surge gran parte del interés por las oscilaciones.

Como siempre se hace en física al tratar de analizar los fenómenos de la vida ordinaria, éstos se simplifican para poder proceder a su estudio de la forma más sencilla posible. Para introducir el estudio de las oscilaciones se hará con un modelo físico fácil de reconocer, analizar y ser expresado matemáticamente. Es el sistema formado por un pequeño cuerpo de masa m {\displaystyle m} situado en el extremo de un resorte capaz de proporcionar una fuerza elástica recuperadora caracterizada por una constante elástica k {\displaystyle k} . Si el muelle está comprimido la fuerza tiende a expandirlo y si se encuentra estirado la fuerza tiende a comprimirlo. La fuerza ejercida por el resorte es proporcional al estiramiento o a la compresión que esté sufriendo (Ley de Hooke). La Ley de Hooke es una ley lineal que simplifica en gran medida su estudio. Si el estiramiento o compresión del resorte no fueran pequeños entonces no se podría usar esta ley que representa una aproximación lineal al análisis de las oscilaciones, necesitando realizar un estudio de la respuesta elástica mas completo.

En un segundo paso, es necesario completar el análisis de las oscilaciones mecánicas libres cuando hay fricción, incluyendo además de la fuerza elástica, una fuerza de rozamiento como una aproximación al mundo natural donde los fenómenos de fricción surgen en todos los sistemas físicos. Para completar el estudio es imprescindible considerar el sistema oscilatorio forzado que surge al forzar exteriormente al oscilador con una fuerza exterior periódica (la forma más importante de excitarlo).

Si bien el sencillo sistema mecánico ha servido para introducir las oscilaciones, otros sistemas oscilatorios como los eléctricos son también de interés y se introducirán más adelante partiendo del circuito R-L-C serie. Los osciladores eléctricos o electrónicos que se emplean en la práctica son evidentemente más complejos que el circuito básico presentado. En general, para cualquier sistema oscilatorio, independientemente de su origen, la variable independiente que figurará en las expresiones matemáticas del fenómeno oscilatorio, será el tiempo.

El análisis de las oscilaciones requiere el uso de unas magnitudes físicas propias entre las que destacan la frecuencia, el periodo o la diferencia de fase. Otras magnitudes físicas como la energía o la potencia presentan su propia expresión al ser aplicadas a las oscilaciones. El tratamiento matemático empleado también es propio de las oscilaciones. Existen varias alternativas que contribuyen a abordar el tratamiento desde diferentes puntos de vista y facilitar en cada caso la interpretación física del fenómeno. El tratamiento algebraico ordinario, el empleo de magnitudes complejas o el uso de vectores rotatorios o bien se emplearán, o bien se indicará en el artículo como hacerlo .

Aunque el tratamiento matemático de los sistemas oscilatorios es el mismo, dependiendo del propio sistema oscilatorio pueden manejarse unas magnitudes físicas u otras. Así como en el sistema mecánico aparecen fuerzas, desplazamientos, velocidades o aceleraciones, en el eléctrico son cargas, corrientes, potenciales, resistencias, capacidades o autoinducciones las variables a considerar. Con todo, en la expresión matemática de las oscilaciones siempre aparecerán la frecuencia o bien el periodo, y la dependencia temporal. Naturalmente son oscilaciones que evolucionan con la variable tiempo. Pero también podemos tener oscilaciones en una variable espacial, por ejemplo, en la coordenada x (eje horizontal) siendo la coordenada y el eje vertical, como se aprecia en el siguiente ejemplo. Si se dispone de una cuerda fija por un extremo, se tensa con la mano manteniéndola horizontal y se generan oscilaciones verticales (a lo largo del eje y), sucede lo siguiente. Cada elemento de la misma genera oscilaciones hacia arriba y hacia abajo, son desplazamientos temporales y(t). En cambio, si en un instante dado, se realiza una fotografía de la misma, se observa en ella una serie de oscilaciones que ya no son función del tiempo t sino que lo son de la posición x, en la forma y(x). No obstante, como ya se ha comentado, en el artículo se tratarán las oscilaciones en el tiempo que dan lugar a numerosos fenómenos en la ciencia y tecnología. Un fenómeno importante que surge al estudiar las oscilaciones es el de la resonancia. Dado el interés que presenta en la práctica, se ha procedido a considerar dentro del artículo. Su gran alcance, sin embargo, no permite dedicarle toda la atención requerida en un artículo general de oscilaciones.

Relacionado con las oscilaciones, un fenómeno físico, de gran interés, son las ondas. Si se toma, por ejemplo, un boya que está oscilando en la superficie del agua, ésta genera oscilaciones hacia arriba y hacia abajo en la posición donde está localizada y estás oscilaciones se propagan en forma de ondas circulares, con centro en la boya, sobre la superficie del agua. Es decir que las ondas se caracterizan por estar generadas a partir de movimientos oscilatorios. En el artículo se hará alusión a las ondas no solo porque un generador de ondas, como la boya, o un receptor de las mismas como una radio convencional, realicen oscilaciones al captar las mismas, sino porque las ondas, al representar perturbaciones periódicas en el espacio y el tiempo, si se fija una de las dos variables (espacio o tiempo), la función resultante, representa una oscilación en la variable restante. Por ello las oscilaciones van a servir también como ladrillo para construir las ondas. De ahí otro aspecto o faceta de la importancia de las oscilaciones. Pero también otros fenómenos físicos como son el de interferencia , el de polarización o el de pulsaciones de las ondas, se pueden tratar matemáticamente y analizar físicamente por medio de oscilaciones en una posición determinada del espacio donde se superponen las ondas en cuestión. En el artículo se incluyen tres ejemplos de superposición de oscilaciones que aclaran estos conceptos. En todos los temas son importantes las figuras, gráficos y animaciones, pero en este de Oscilaciones, son de especial interés para la comprensión de los diferentes aspectos del fenómeno ondulatorio y su tratamiento matemático.

Autor

elduendesuarez

elduendesuarez es un compositor, músico, cantante, escritor y director de cine español. Entusiasta de las nuevas tecnologías, en todas sus formas y presentaciones. El futuro ahora mismo, al alcance de tu mano.

Recibe nuestras noticias en tu correo

Experto
elduendesuarezTecnología

elduendesuarez es un compositor, músico, cantante, escritor y director de cine español. Entusiasta de las nuevas tecnologías, en todas sus formas y presentaciones. El futuro ahora mismo, al alcance de tu mano.

Lo más leído